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CURRENT AND ELECTRIC-FIELD PRODUCTION NEAR A NONCONDUCTING 

ROTATING SPHERE IN A HOMOGENEOUS PLASMA IN A STRONG MAGNETIC FIELD 

V. G. Pivovarov UDC 533:538 + 550:38 

Central problems in magnetosphere physics include the motion of the plasma near the ro- 
tating earth and the currents and electromagnetic fields generated by this rotation. We con- 
sider the following model problem in order to obtain a conception of the structure of the 
current system and the motion of the plasma. An insulating sphere of radius ro is surrounded 
by a homogeneous incompressible conducting liquid and rotates with an angular velocity e. At 
the center of the sphere there is a magnetic dipole, whose moment coincides in direction with 
the axis of rotation. The plasma density p, conductivity ~, and viscosity~ are independent 
of the coordinates. 

We assume that all the perturbations associated with the rotation decay away from the 
surface of the sphere. The attachment condition is obeyed at the surface of the sphere it- 
self, while the normal component of the current becomes zero. 

The behavior of the plasma is described by the equations of magnetohydrodynamics [I] 

P(uV)u q- V(P + H2/8~) = (Hv)II/4~ + ~,Au, (i) 

d i v u  = 0, d iv  H = 0, r o t [ u  H] + ~ A u  = 0, 

where u and H are the speed of the plasma and the magnetic field, p is the plasma pressure, 
and ~m is the magnetic viscosity, which is related to the conductivity ~ by 

The magnetic field within the sphere satisfies the equations 

ro t  H t~ = O, div  H in = 0. 

If the total magnetic field His represented as H~n=HD+h, where H~ is the dipole magnetic 
field and h is the perturbation field, then we introduce the scaler potential ~ for the mag- 
netic field h by h= V~, which gives 

AO = O. (2) 

The magnetic field does not change on passing through the surface of the sphere, so ~ should 
satisfy the following at the boundary: 
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0t~)/0T/ Ir=ro ~ Hn-- H D n  , Ol~3/OTIr=rO = (II,g - -  I{D.~).3g , 

where H n and H: are the normal and tangential components of the magnetic field outside the 
sphere and n and T are unit vectors normal and tangential to the sphere. 

The first boundary condition with (2) having a known right part leads to a classical 
formulation, namely a Neumann problem for the Laplace equation, which has a solution unique 
apart from an additive constant. This means that the second boundary condition can in that 
case be used as an equation for H~:H~ = H~(H~}. In a spherical coordinate system with the 
z axis lying along the axis of rotation, the condition for no current within the sphere can 
be put as OHcvsinO/OOlr=ro~-O or / - / ~ s i n O [ r = r o = ~ ( r o )  = const. The requirement that H~(O) is 
bounded for all values of O means that Hr Ir=r . = O. 

The dipole field does not have a ~ component, so h~Ir=ro = 6 which means that the total 
magnetic field and also the perturbed one lie in the meridional planes within the sphere. 

The boundary conditions for the speeds of the plasma are obvious: The motion of the 
plasma should vanish far from the surface of the sphere, while the attachment condition ap- 
plies at the surface itself. If u, v, and w are the r, 8, and ~ components of the velocity, 
then u !  .... o = 0 .  t ' [ r=ro~---O , W l r = r o = O r o s i n O .  System (i) is put in the spherical coordinate sys- 
tem as 

0,~ v Ou v ~ + w ~ Op O ~ 1 ( ~ , OHio 
. . . . .  H~ -r H~o + rH~ Or g Or -7 r ~ "  r @Or H e R e  m r 

-~ rgo  -07-r - -  gO ~-) + g~ A~ + 

~,., , you  w ~ , uOV t o p  G = I ( i i~Ho + r H  Oag/[ 
r 7 r O0 r~'gO ~-  O r ' @ r ~ ' - - I t e l t e r n  r 

% 

0It r H~ H~ + Av  + , ( 3 )  
--  Hr  oo tg  o "-off'] r a 00 r ~ s in  e 0 ' 

~:" v Ow , uw vw t G 2 t (  0II~ Boll  ~ 
u =-- @ - ~- r tg  0 Re He m _ 0o tg 0 ~,- ~ O0 - 7  + = H o  ', 

o.o, .5o), + I I ' H r  + rH'-w-r ) + 

t o . , I 0 t 0 
( H o ~ i n 0 )  0 ,  t 0 (r~u) ( v s inO)  = 0 ,  

" 7 ~ ( r ' H ,  .) r s inO 0 " = 7 ~ r  + s - [ ~  

t'H~ - -  w h o  1 ] a (Hq~ sin O) = O~F 
r s i n 0  Re m 0O Or ' 

w t G - -  ,,dI~ I I o (~Iz~) t o ,F  U U o - - V / G  i t [o~ro o.%~ 0 
,. ae,~ or : 7 o-~' 7 ae m \ ~ Yd']= ' 

where G, Re, and Re m are the Hartman and Reynolds numbers, while A is the Laplace operator. 
All the quantities in (3) may be reduced to dimensionless form by dividing by the character- 
istic quantities; ro, the radius of the sphere; v = ~ro, the rotational speed of an equa- 
torial point on the sphere; and Ho, the dipole magnetic field at the surface of the sphere 
in the equatorial plane. The function ~, which has the meaning of the dimensionless electro- 
static field potential, is undefined. Only two of the last three equations are independent. 

We divide the entire region of plasma flow into two parts: a boundary region, where the 
radial gradients in the velocities are large, and a remote region, where the rates of change 
in the functions are of the same order in all directions. 

Near the rotating sphere, we transform the initial system of equations to a form in 
which the derivatives are of the same order. For this purpose we make a change of independent 
variable of the form (r -- 1)G = 0, and instead of the Hartman number G, which is subsequently 
considered as large (G >> i), we introduce the small parameter e = I/G. Then the system of equa- 
tions for the boundary region may be put as 

a ~ ( l + ~ p ~ ' ~ §  v N - - v  ~ - w  2 +(1-4-  p) 8 op 

- -  Re Re m " ~ o ]  Re Re m 
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2(|-4-sp)e 2 0v ~a 1__~_t O 0t~ Ou t~ ] 
Re 00"P ReLsin0 0 0 s i n 0 ~ + 2 ~  sinZ0 ' 

s ' ( l  + ~ p f u 0 ~  + s 8 { t + ep~ ~ v ~ + uw + t ' ~  = 

) '~ (! + ~O)~ oil_ , t + sp l ott~ tto[t r (t  + sp," _ o~z 
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t + e p  0 0 (1 + ep)-~ + e Ho sin 0 = 0, 

o ( t  + ep)~u + - ~+ so 
0p ~ s-i-ff-~n ~ ~ v s in  0 = O, 

s ( l & e p ) ( v S ~ - - w H o )  ~ t 0//~sin0 = ( l + e p ) ~ ,  
Re m sin 0 00 

l 0 ( l + e p )  H~ OT 
e (1 + ep) (wH, - -  uric,) + l l e ~  0p = 8 ~-, 

e ( i + s p ) ( u H o - - v H ~ ) - -  ~ 0Ho( I+eP)  e oH. 
Re m 0p "-~ Re m 0~ = 0 "  

The solution is sought as a series in the parameter e. We use the zeroth and first ap- 
proxlmations of this parameter to get the following expressions for the velocities and com- 
ponents of the magnetic field that satisfy the above boundary conditions: 

v = 0 ,  u=0, 

. 

w = ~- sm  e [exp (/~rP), I ~  < 0, 

t 2_,.o P tt (h~sin 

t t o = S g + ~ { 3 p s i n O + h ~ + p h ~  

-c= l -  + (s~ s o < o, 

1 where H i = --2 cos 0 + hl, H~ = --sin 0 + h~, and h~ and h a are the boundary values of the a 
component of the perturbed magnetic field in the sphere corresponding to the zeroth and first 
orders in E. 

From these expressions we draw conclusions on the structure of the flows and electromag- 
netic fields near the rotating sphere. The speed of the plasma in r or 8 is much less than 
the speed in ~. The speed in ~ due to rotation of the sphere is maximal in the equatorial 
plane and falls as the poles are approached. The thickness of the Hartman layer, in which 

% H ~ is dependent on 8, the layer thick- the motion is appreciable, is defined by 8-~ GI~ I �9 As r 

ness varies with e. There is an H~-compdnent in the magnetic field because of the currents 
r and e. These expressions can be simplified for weak perturbations, and H~___--2cose 

o H~__--sine ; we merely note that for H r the approximation does not apply near 0 _ ~/2, while 

for H e~ is does not apply near e N0-- If the perturbations are small, the regions in which 
the approximation is not applicable are also small. 



For the other parameters we have 

I sin O-exp (2p oos 0), "~ < O  ~ . ~ ,  

"=, isi,,O-e p (--  ,p osO>, I. 
6p COS O s H~ = - -  2 cos 0 + 5- 

He = -- siaO + ~ sin O, 

/i--exp(2pc~ ~ < 0 < ~ ,  
Re", t 
-d- ' [_t+exp(_2pcos0),  0 < 0 < 2 ,  

6 ~ r o (G 2 cos 0) - t .  

The latter expression implies that the thickness of the Hartman layer is minimal at the 
poles and increases towards the equator. The thickness at the equator itself is given by 

r e i 

6N~TV" 
The magnetic perturbation in the ~ component changes sign on passing through the equator, 

which is due to the currents flowing in the meridlonal plane. For 8 ~ (a/2, 0] 

c Re,,. {cos 0(i--e -~pc~176 - -  p sin~O'e-=Pc~176 I r -  4nrG 

c Re,, sin 0 [ t  - -  e -~oc~176 -{- 2p cos 0 .e  -2pc~176 
Io = - -  4 ~  

The current 18 becomes zero at points 0 = 0, i.e., at the pole, and tends to zero at the 
equator. For p + 0 the current is I 0 § 0 and is directed from the equator to the pole. The 
radial current becomes zero at the surface of the sphere in accordance with the requirement 
that no current flows through the surface. For O + z/2 we have I r < 0, and for e § 0, we 
have I r > 0, so the current flows away from the surface of rotation near the pole. There- 
fore, the radial current becomes zero at an intermediate point e*. This point is given by 

COS O* ( t  - -  e -=pc~ 0.) ----- 2p sin 2 O* .e -2pc~ (3)  

Near the surface of the sphere, this equation becomes cos=e * = sln=8 * , so 0* = #/4 and %* = 
3z/4; for p § ~ we have e* § z/2, although this analysis cannot be used near the equatorial 
plane. However, the law of conservation for the total current indicates that the current 
flows into the Hartman layer near the equatorial plane, then flows along the surface, and flows: 
out near the poles. At the outer boundary of the layer (p-+ oo) I r ~__ c Rein cos @/[4~(r 0 + 8)G]. 
Therefore, the current flows out of the Hartman layer along almost all of the external boundary, 
apart from a narrow band near the equatorial plane, where it flows in. The density of the 
inflowing current must be much greater than that of the outflowing one. The value can readily 
be estimated if it is known that lhr] = IH~rl at e = 0o. For the steady-state case we have 

c Re", ~ cos OdO 
<I>D" 4~G j ~ ' w h e r e D ~ r ~ 1 7 6  

60 

We put 8<< ro for the purpose of estimation, which gives <I>~__c Re",/4a~DG. 

This analysis of the equations near a rotating sphere also gives an idea of the plasma 
behavior at large distances. If the plasma has isotropic scalar conductivity, the currents 
flowing from the Hartman layer at O > 8o diverge through the plasma the more strongly the 
larger the Hartman layer. These currents return to the Hartman layer alon 8 the equatorial 
plane, where they flow perpendicular to the lines of force of the magnetic field. The cur- 
rent system and the corresponding electric fields outside the Hartman layer can readily be 
determined if we neglect the motion of the plasma in this region. Then Ohm's law can be 
written as I = ~E. As div I = 0and rote = O, we introduce the scalar electric field potential 
~; E =--VT, which gives us the equation A~= 0 with the boundary condition a~/@nlr =I,/~, 
where F is the boundary of the Hartman layer, n is the normal to this boundary, and I n is the 
current flowing into or out of the layer and which is determined from the previous solution. 



Thls consideration of the currents in the Hartman layer goes with the problem formulated 
above for the external currents and electric fields to glve rise to some important conse- 
quences: 

i) The density of the outflowing currents varies smoothly along the outer boundary of 
the Hartman layer; 

2) the current flows Into the Hartman layer within a narrow band of width D defined 
by IH~r[ ~ Ih~l; 

3) the density of the infl0wlng current is much higher than that of the outflowlng one, 
and as regards order of magnitude we can write lln/lout ~ D/ro; 

4) the inflowlng current is perpendicular to the lines of force of the dipole magnetic 
field; 

5) the force (l• in the region of the inflowlng currents accelerates the plasma in 
the sense of rotation. The force Is directed in the opposite sense in the region of the out- 
flowing currents. Equation (4) defines the llne dividing the regions of inflow and outflow; 

6) the density of the inflowlng currents is much higher than that of the outflowlng 
ones, so the force (|XH)/sec has the main influence on the motion of the plasma near the equa- 
torlal plane; 

7) this current structure outside the Hartman layer means that the~plasma in the region 
of the equatorial plane rotates much more rapidly than the plasma outside this region; and 

8) the characteristic scale of the region in which the currents are appreciable is of 
the order of ro. 

This analysis gives a clear conception of the system of motions, currents, and electric 
fields near a rotating sphere surrounded by a plasma in the presence of a dipole magnetic 
field. The results can be used to interpret data on the electrodynamic structure of space 
near rotating stars and planets having their own magnetic fields. 

It is familiar that the speeds of rotation of the surface layers on the sun differ and 
are dependent on the distance to the equator, where the value is maximal [2]. It is possible 
that the mechanism Is related to currents flowing through the solar plasma and arising from 
the rotation of the sun and the friction of the upper layers on the corona at rest. 

Another example having a bearing on this is the behavior of the plasma near Jupiter [3]. 
In the equatorlal plane, the magnetic field lines are highly elongated as a result of the 
rapid rotation of the equatorial plasma along with Jupiter. 

The electrodynamic structure of inner space Is determined by many factors [4, 5], in- 
cluding the earth's rotation. It Is difficult to make direct use of the above results to ex- 
plain experimental data on the motion of the plasma near the earth, but in [6] a current sys- 
temwas derived analogous to that described above on the basis of viscous friction and the 
earth's rotation. 
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